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Abstract
An algorithm is presented for approximating the arbitrary powers of a black
box unitary operation, U t , where t is a real number and U is a black box
implementing an unknown unitary. The complexity of this algorithm is
calculated in terms of the number of calls to the black box, the errors in
the approximation and a certain ‘gap’ parameter. For general U and large t, one
should applyU a total of �t� times followed by our procedure for approximating
the fractional power U t−�t�. An example is also given where for large integers
t, this method is more efficient than direct application of t copies of U . Further
applications and related algorithms are also discussed.

PACS numbers: 03.67.Ac, 03.67.Lx

1. Introduction

Suppose an n-qubit unitary U is implemented by evolving (or simulating the evolution of) a
time-independent Hamiltonian H for a period of time τ = 1, that is, U = e−iH . Then for any
t ∈ R+, one can implement U t by simply evolving the Hamiltonian for a period of time t. For
example, if t = 1

2 , then a square root of U, e−i 1
2 H , could be implemented in this way, and in

such a model of computation the cost would be half of the cost of implementing U .
In our work, we question what can be done if U is realized in some other way, such as

a non-trivial sequence of time-dependent Hamiltonians or a quantum circuit. In other words,
consider the situation when U is given in the form of a black box. The goal is to implement
real-valued powers t of this unitary operation by making use of the multiple copies of the black
box implementing U . The complexity of such a procedure is measured in terms of the total
number of calls to the unitary.

It is possible to find the tth power of an unknown unitary by first performing a sufficiently
precise complete quantum process tomography of a (2n × 2n)-dimensional unitary U , which

1751-8113/09/185302+15$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/18/185302
mailto:lssherid@iqc.ca
http://stacks.iop.org/JPhysA/42/185302


J. Phys. A: Math. Theor. 42 (2009) 185302 L Sheridan et al

uses O(4n) calls to the unitary with various input states [1, 2] and measurements to achieve
U with constant precision. The exponential scaling with n is necessary. In particular, a lower
bound on the number of calls to the unitary can be derived from constructing an ε-net over
unitaries6. If the space of unitary operations is divided up into balls of radius ε, then the total
number of unitaries that can be specified up to this resolution is

(
c
ε

)4n

, where c is a constant.
To specify each of these requires 4n log

(
c
ε

)
bits. To discover information about U , one

might supply states to the unitary tensored with the identity operation of the same dimension
(a larger dimension does not help) and perform measurements on the output states. The states
will have dimension 4n, and by Holevo’s bound one could hope to obtain no more than 2n bits
of information for each of these calls to U (in general, we will get less than this). Therefore,
it is not possible by tomography to use fewer than �

(
4n

2n
log

(
c
ε

))
calls to U . Even if we allow

for error in some fraction δ of the basis states, this still cannot reduce the required number of
calls to any function polynomial in n [3].

In this paper, we report on a more efficient approach to implementing powers. In particular,
we present an algorithm for approximating with error ε (using the trace norm) any constant
power of an unknown unitary using only O

(
1
ε

log 1
ε

)
calls to the unitary itself, assuming that

a certain ‘gap’ parameter g we explain later satisfies g ∈ �(ε) (otherwise, the complexity is
O

(
1
g

log 1
ε

)
calls; see section 2.2 for more detail). Note that this complexity is independent of

the number of qubits n.
There has been some relevant prior work concentrating on the relation between discrete

and continuous oracles for various problems. Farhi and Gutmann [4] introduced the concept
of (continuous) Hamiltonian black box oracles for quantum computing. Ioannou [5] and
Roland and Cerf [6] consider the problem of simulating a Hamiltonian for Grover search
[7] on a discrete computer. Mochon [8] extends this to a more general setting where he is
concerned with finding lower bounds for discrete oracle problems by considering them in the
Hamiltonian setting and mapping them to the problem of finding geodesics in manifolds. In
particular, he considers one-item Grover search and oracle interrogation, highlighting the case
of computing the XOR function on a hidden bit string. In these cases, he is able to exploit
symmetries in the oracle problems to solve what is otherwise a very difficult problem. Our
focus is different. First, we do not allow for an oracle to be applied a fractional amount of time
(instead, we are concerned with simulation of fractional oracles in the case when an oracle is
only allowed to be applied an integer number of times). Second, we present an algorithm, with
our focus on (constructive) upper bounds. Third, we do not make symmetry assumptions on
our oracles. Finally, we do not restrict the eigenvalues of these unitaries to ±1 as in the Grover
search and XOR case, or the work in [9] which shows how to simulate a general continuous
Boolean oracle evolving for a total of time T with O(T log T/ log log T ) discrete oracle
queries.

The remainder of the paper is organized as follows. In section 2, we describe the
basic construction for efficient computation of the powers of U , discuss our assumptions
and constraints, give the complexity of the computation and calculate the precision of our
approximate solution. The full calculation of these results is included in appendix B. An
example of a special case in which t is a large positive integer and our algorithm is more
efficient than direct application of the t copies of the unitary is given in section 3. Related
applications of our algorithm to computing the fractional Fourier transform and noise filtering
are explored in section 4. Finally, we discuss the implications of this work in the concluding
section.

6 We thank P Hayden for this observation.
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|0 / QFT2m • QFT−1
2m • QFT2m • QFT−1

2m

|Ψ / Uj R(2 2m) U−j

Stage I Stage II Stage III

Figure 1. The quantum circuit diagram outlining the implementation of the algorithm that raises
an unknown unitary U to some power t. Stage I performs eigenvalue estimation, where value l in
the first register corresponds to the eigenvalue parameter estimate λ = l/2m. Stage II then uses
this eigenvalue estimate to induce a corresponding phase shift e2π ilt/2m

. Stage III uncomputes the
eigenvalue estimation step. In the case that the eigenvalue parameters λk are of the form lk/2m,
the eigenvalue estimation is exact and the uncomputation step returns the control register back to
the initial all-zeros state. In general, when we do not have this assumption on the form of the
eigenvalues, we perform a slightly more complicated eigenvalue estimation algorithm that gives
an estimate with error at most 1/2m with probability in 1 − O(1/2m).

2. The algorithm

In this section, we describe our basic construction. For any unitary U on a finite-dimensional
state space, consider its spectral decomposition U = P�P †, where P is a unitary matrix
composed of the eigenvectors of U and � is a diagonal matrix containing the eigenvalues of
U . For such a decomposition, powers of U may be computed as follows:

U t = P�tP †. (1)

A key observation is that in the quantum case, one does not need to actually implement the basis
change operators P and P † in order to exploit the above feature of the spectral decomposition.

For now, let us assume that t is a real number between 0 and 1.
Our algorithm is described in three stages. In the first stage, approximations to

the eigenvalues of U are calculated using an eigenvalue estimation algorithm. Let us
initially assume that the eigenvalues are of the form e2π iλk with λk = 	k

2m for some integer
	k ∈ {0, 1, . . . , 2m − 1} (so that we can initially ignore the effect of precision errors). In the
second stage, phase shifts are applied to the eigenstates of U . The third stage uncomputes the
eigenvalue estimation. Refer to figure 1 for details.

Suppose that |
〉 is a quantum state on which we wish to perform the transformation
U t . Note that any state |
〉 is a superposition of eigenvectors, |ψk〉, of U, |
〉 = ∑

k αk|ψk〉.
Prepare m ancilla qubits in the ‘all-zeros’ state, where m is a user chosen parameter that
characterizes the complexity of and errors in our algorithm; its role is discussed in more detail
in appendix B. These ancilla are input to the quantum Fourier transform (QFT) circuit [10]
(or equivalently, since applied to the all-zeros state, a circuit consisting of only Hadamard
operations on each qubit) and later they are used as the controls for controlled-U operators,
while the state |
〉 is the target. The notation c−U j denotes the operation |j 〉|φ〉 �→ |j 〉U j |φ〉.
Using the eigenstate expansion of |
〉 in the target, it can be shown that such a controlled
operation causes a phase kick-back to the control register, so that the total state becomes∑

k

∑
j αk e2π iλkj |j 〉|ψk〉. Next, an inverse QFT operation is performed on the ancilla register.

The result left on the ancilla register is estimates of the eigenvalue parameter, λk , specifically
	k = 2mλk , in superposition (as dictated by the input vector |
〉). For a more detailed
description of the eigenvalue estimation algorithm, see [10].

For stage II, we apply the controlled operation c − R(2π	kt/2m) to induce the phase
shift e2π i	k t/2m

when the eigenvalue parameter estimate 	k is in the control register. This
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computation corresponds to the exponentiation of the diagonal matrix in the spectral
decomposition formula. There are a few natural ways to implement this step, as shown
in [11] or [12].

Finally, the state of the control register (containing the 	k values) is uncomputed back to
the all-zeros (input ancilla) state. This completes the third and final stage of the computation.

This leaves the registers in the final state |0〉 ⊗ ∑
k αk e2π iλkt |ψk〉, which is simply the

result of the application of U t to the state |
〉. When we drop the assumption that the
eigenvalue parameters λk are exact ratios of some integers 	k divided by 2m, we will in
general get precision errors in the eigenvalue estimation. This imprecision in the resolution
of λk means that the phases applied to the state are not exact, which further implies that the
uncomputation step does not return the ancilla register precisely to all zeros. Still, by a proper
choice of parameters, and a ‘gap’ assumption discussed below, the errors can be managed—in
particular, we prove that they are exponentially small in the parameter m. This error reduction
is done by choosing an eigenvalue estimation algorithm that outputs an estimate with error
at most 1

2m with probability in 1 − O
(

1
2m

)
. This can be done with O(m) repetitions of the

standard QFT-based eigenvalue estimation algorithm [10] and applying the Chernoff bound.
This uses O(m2m) calls to the black box. Relevant calculations may be found in appendix B.

2.1. Underlying assumptions

Our algorithm, as formulated in the previous section, asserts that in addition to the black box
implementation of U itself we also have access to a black box implementing controlled-U and
a black box implementing U−1. Furthermore, we also must assume, as discussed in more
detail in the following section, that the spectrum of matrix U has a small gap, in particular that
U has no eigenvalue λ = eiφ , where φ ∈ (2π(1 − g), 2π) for some value g. For simplicity,
we assume that g � 1

2m ; otherwise, we would need to replace some of the O(2m) terms with
O

(
max

{
2m, 1

g

})
(the reason is that we need to do eigenvalue estimation with precision less

than the gap size with high probability). In this case, we achieve an approximation with error
in O

(
1

2m

)
. Note that there are no other assumptions about gaps elsewhere in the spectrum.

Furthermore, an assumption of this form is essentially necessary in the case of worst-case
complexity (as we explain in section 2.2), which is what we are interested in. Average-case
performance is discussed more in appendix D.

Not all of the above restrictions are necessary, but they facilitate a clear and transparent
description of the algorithm and its analysis. In some cases of interest, the individual
restrictions may be dropped. In particular, in cases where only the black box implementation
of U is given (and not the controlled-U), one can exploit the technique for implementing a
controlled-e−iφU , where eiφ is a random eigenvalue of U , and use it in the algorithm to find
arbitrary powers, as outlined in [13] (see appendix A for details). In some special cases, we can
remove the assumption of having a black box for U−1. For example, for non-integer values of
t � 2m, we can approximateU t with error in O

(
1
t

)
using O(t) calls to the controlled-U , without

any use of a black box for U−1 (see appendix C). We note that the above restriction on the
form of the spectrum is naturally satisfied in many practical unitaries, including the quantum
Fourier transform, standard oracles |j 〉 �→ (−1)f (j)|j 〉 for computing Boolean functions f (·)
and oracles such as those implicitly used in the adiabatic algorithms of Farhi et al [14] that
reversibly compute a function with a finite discrete spectrum.

It is also worth noting that, for non-integer values of the power t, there are many operators
that one might reasonably call the tth power of U . In other words, for any given U , there are
many Hamiltonians H such that U = e−iH , and thus one could naturally define U t as e−iHt for

any one of these Hamiltonians. For instance, consider t = 1
2 and the identity matrix I = (

1 0
0 1

)
.
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Let us find all unitary matrices B such that BB = I. In the most natural understanding, each

such B is a possible square root of I. First, matrices I and
(−1 0

0 −1

)
are both square roots of

I. This happens because there are two possible square roots of the complex number 1, which
is the eigenvalue of I. In addition, each eigenspace of a unitary matrix may be broken into
subspaces such that different square roots of the corresponding eigenvalue may be used to
construct square roots of a given matrix. In our case, this helps to construct two more square

roots of the form ±(
1 0
0 −1

)
. Furthermore, every matrix of the form ±(

cos a eb sin a

e−b sin a − cos a

)
, and its

transpose, where a and b are real-valued parameters, is a square root of the operator I. For the

choice of parameters a = π
2 and b = 0 this allows us to construct root

(
0 1
1 0

)
, also known as

the Pauli-X matrix. Roots of the identity matrix in higher dimensions get more complicated.
Thus, the problem of finding fractional powers is not completely straightforward to define. In
our solution, we construct fractional powers based on the spectral decomposition, choosing
the primitive complex fractional power of every eigenvalue (though, in principle, our method
allows us to break the eigenspaces into subspaces and take different roots of the eigenvalue for
each subspace). Thus, in a sense, the fractional power we construct is the most natural one, and
also it is the fractional power of a matrix most commonly defined in linear algebra textbooks.
With the above example, our algorithm implements the I root of I, though modifications are
possible that would allow us to explore a wider range of square roots of I.

2.2. Optimality

For such a general black box and assuming a spectral gap of size g = 1
2m , we cannot compute

U 1
2 with constant error with fewer than �(2m) calls to U . To see why this is the case,

suppose we are given either U = I or U = U1−1/2m = |0〉〈0| + e−2π i/2m |1〉〈1|. It follows from
the following simple lemma that �(2m) calls to U are necessary to correctly guess which U
we were given with probability greater than 2

3 .

Lemma 1. Suppose we are given a black box U that implements either I or U1−δ =
|0〉〈0| + e−iδ|1〉〈1|, for some small δ > 0. Any algorithm that correctly guesses the identity of
U with probability at least 2

3 , for any prior distribution of the two possible values of U , must
make �

(
1
δ

)
evaluations of U .

This can be easily proved, e.g., by the ‘hybrid’ method [15].

Note that the root U
1
2

1−1/2m(|0〉+ |1〉) = |0〉−e−π i/2m |1〉 is almost perfectly distinguishable

from I
1
2 (|0〉 + |1〉) = |0〉 + |1〉. Thus, the power finding algorithm must take �(2m) calls to U

in order to compute U 1
2 with (small) constant error. The same holds for any power t ∈ (0, 1)

that is bounded away from from both 0 and 1.
Thus, while more efficient ways to compute fractional powers of U are possible in special

cases, in general one cannot do much better than what we have described. In the case when
1

2m < g < π , we can still obtain a lower bound of �(2m) queries by letting U be either Z or
|0〉〈0|− e−2π i/2m |1〉〈1|, and computing square roots of U2 as a means of distinguishing the two
cases.

This same argument also shows why a gap assumption is necessary. Without the gap
assumption, there is no upper bound on the worst-case complexity of computing the square
root of a black box unitary, since such a black box could be used to distinguish I from
U1−δ = |0〉〈0| + e−iδ|1〉〈1| for arbitrarily small values of δ. As pointed out earlier, if we
have a known gap g without a promise that g ∈ �(ε) = �(1/2m), then a complexity of

5
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O
(

1
ε

log 1
ε

)
suffices, and the example above shows that �

(
1
g

)
queries are necessary. If g is

unknown, then there are several cases one might consider. If we are promised a lower bound
0 < gmin � g, then in the worst case, we must use O

(
1

gmin
log 1

ε

)
calls to the unitary. If instead

we have a means of reliably recognizing when the algorithm has succeeded, then trying a
sequence of lower bounds that decreases exponentially until the algorithm succeeds will also
give a complexity in O

(
1

min{g,ε} log 1
ε

)
, which is the same complexity as when g is known.

If, however, we do not know g and have no means of recognizing when the algorithm has
succeeded, then no upper bound is possible.

3. Large powers and an example of exponential improvement

When it comes to computing large powers of U by this method, precision in the eigenvalue
estimates becomes a limiting factor. If instead of the exact eigenvalue e2π iλk we have its
estimate e2π iλ̃k , where |λ̃k − λk| = ε, then mapping |ψk〉 �→ e2π iλ̃k t |ψk〉 will lead to an error
in the phase parameter of size tε. For arbitrary U , it takes O

(
1
ε

)
calls to U in order to get an

estimate with error at most ε with high probability. Thus to achieve an error of δ = tε in the
application of U t , we need ε = δ/t precision in the estimate, amounting to O

(
t
δ

)
calls to U .

For t > 1, a better thing to do in this general case is to first apply U a total of �t� times, and
then use the method from the previous section in order to compute the remaining fractional
power of U .

However, if for special cases of U we are able to get smaller errors in the eigenvalue
estimates, we can do much better. For example, for black boxes that map |j 〉 �→ (−1)Xj |j 〉
for some j ∈ {0, 1}n and X1X2 . . . Xj . . . XN ∈ {0, 1}N , it is easy to exactly determine the
eigenvalue parameter Xj with only one call to the black box. As discussed later, it is easy to
exactly determine the eigenvalue of an eigenvector of the quantum Fourier transform, since
the QFT has order 4. In both of these examples, our technique does not help with computing
higher powers of U since U has very low order, say r, and thus computing U t is equivalent to
computing U t mod r , where t mod r is the unique element of t − rZ that lies in in the interval
[0, r). We next construct an example where U has very high order, but one can still compute
precise estimates of its eigenvalues with relatively few calls to U , and thus exponentiate U
with much fewer than t calls, even for t less than the order of U .

Suppose the eigenvalues of the desired unitary U are all of the form e2π i 	k
pk , for k ∈

{1, 2, . . . , b}, where 	k is an integer, pk ∈ {p1 = 2, p2 = 3, p3 = 5, . . . , pb|pi = ith prime}
and b is a natural number. Then UB = I, where B = ∏b

k=1 pk , and (assuming that each pk

occurs at least once with a non-zero lk) no lower power of U is equal to the identity. If t
is on the order of B, then the number of calls to the unitary required for the straightforward
implementation of U t is in O(B) = O

( ∏b
k=1 k log k

)
. This product is called a primorial [16],

and it is in O(e(1+o(1))b log b) = O(b(1+o(1))b).
We next demonstrate how our basic algorithm introduced in section 2 may be updated to

approximate U t with exponentially fewer calls to U than the number of calls it takes to obtain
U t via a direct application of t unitaries.

The method used for this problem employs the continued fraction algorithm, which
was also used in the order-finding part of Shor’s algorithm [17]. The eigenvalue estimation
algorithm will return an estimate h

2m of the eigenvalue parameter 	k

pk
to within an error at most

1
2m with probability at least 8

π2 . The error probability can be amplified down to 1
2m by repeating

the estimation O(m) times and taking the majority vote. If m is chosen such that m ∈ O(log b),
so that 2m > 2pbpb−1, then the fraction 	k

pk
will be the only fraction, or convergent, in the

continued fraction expansion of h
2m that has distance at most 1

2m from h
2m and has a denominator

at most pb.
6
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Figure 2. A diagram illustrating the procedure. The estimate is h
2m . The smallest gap between any

two eigenvalues is 1
pbpb−1

and we require this to be larger than 2
2m to ensure that only one rational

fraction with the denominator no greater than pb will be found in the region h−1
2m to h+1

2m .

This convergent 	k

pk
can be found with O(m) arithmetic operations over integer numbers

with at most log m bits each (e.g., no more than O(m3) binary operations using trivial
algorithms for division and multiplication) using the continued fraction algorithm. Once
we have the exact value of the eigenvalue parameter 	k

pk
, with probability 1

2m , we can correctly

compute any positive power t of U with error in O
(

1
2m

)
using poly(b, log t) calls to U and

other elementary operations. This is done by mapping, in superposition, |	k〉|pk〉|ψk〉 �→
e2π it 	k

pk
+O( 1

2m )|	k〉|pk〉|ψk〉, which can be done by standard reversible computing methods and
m-bit arithmetic operations (the O

(
1

2m

)
error is due to precision in the arithmetic operations).

Then, as usual, one uncomputes the computation of |	k〉|pk〉. As alluded to before, this gives
an overall complexity of O(m2m) = O(b log b) (⊆ O(2m)) to perform the operation up to
error O

(
1

2m

)
. This follows from (B.11) in appendix B.

This complexity is polynomial in log t (versus poly(t)) because we only need to compute
an m-bit approximation to t	k/pk . This also allows us to uncompute the eigenvalue estimates
found in the first stage of the algorithm without ever needing to use the operation U−1. Note
that t could be very large, for example t ∼ B/2 = 2b−1. In this case, we can apply U t to any
state of appropriate dimension with the output state containing an error term with probability
amplitude O

(
1
b

)
with only O(b log b) � t ∈ O(2b) calls. The error probability can efficiently

be made exponentially small by repeating the phase estimation part.

4. Fractional quantum Fourier transform

In classical computation, roots of the Fourier transform are used for efficient filtering of the
frequency noise that is some non-constant function of a conjugate variable, such as time [18].
Given the role the QFT plays in the quantum computation, and the importance of roots of
Fourier transforms in classical computation, there may as well be other interesting techniques
based on the fractional powers of the quantum Fourier transform.

Note that QFT4 = I. Let us illustrate the computation of a fractional power t, t < 1
of the QFT using the algorithm introduced in section 2. First, note that the QFT has four
distinct eigenvalues: +1, i,−1 and −i. This means that we need only two ancilla bits for the
eigenvalue estimation part of the exponentiation algorithm, and such estimation results in the
exact values. During the eigenvalue estimation algorithm, the controlled-QFT is applied three
times (20 = 1 with the first ancilla qubit as a control and 21 = 2 more with the second ancilla
as a control). We need three more applications of the controlled-QFT in the third stage of the
algorithm to uncompute ancilla. This means that the query complexity of the computation of
a fractional power of the QFT is exactly six queries to the controlled-QFT. Moreover, during
such computation we introduced no errors due to the approximations of eigenvalues, and thus,
given all gates are perfect, the computed fractional power is exact.

This specific example of fractional QFT was alternatively derived as a special case of
the work of Klappenecker and Rötteler [19], where they address the different problem of

7
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how to simulate a known unitary matrix A given other operators that generate an algebra
containing A.

5. Conclusions and discussion

In this work we have further developed the connection between continuous time black boxes
(i.e., ‘Hamiltonian oracles’) and their discrete counterparts, unitary black boxes. Previous
work has mostly focused on important special cases of this relationship. Our work pushes
the boundary in a new direction, where the unknown U is a unitary acting on an arbitrarily
large Hilbert space. It also demonstrates constructively that an algorithm with a continuous
oracle can also be implemented with a discrete oracle that implements the continuous oracle
for some fixed time (with some assumptions on the Hamiltonian encoded by the oracle; e.g., if
the energies, the eigenvalues of the Hamiltonian, are between 0 and Emax, then the fixed time
interval should be bounded below 2π/Emax so that our gap assumption is satisfied).

For the case that t is a positive non-integer, the complexity of this algorithm is substantially
higher than that in the continuous setting, where we have access to a Hamiltonian H satisfying
U = e−iH . If we have direct access to the Hamiltonian, H, then in principle we can easily
perform any unitary of the form e−iHt with a cost t in terms of calls to the Hamiltonian. For
an algorithm with total query complexity t < 1 in the Hamiltonian black box model, it is
hard to imagine a reasonable way to effect e−iHt with fewer than one evaluation of U and
indeed our algorithm makes O

(
1
ε

log 1
ε

)
calls to U to effect e−iHt with precision ε (we show

a corresponding lower bound in section 2.2), which is notably lower than the number of calls
required in the obvious approach of doing process tomography on U , approximating U t and
then synthesizing a circuit to implement such an approximation. In particular, our approach
does not depend on the dimension of the Hilbert space that U acts on.

We have presented an algorithm for finding the powers of unknown unitary operations
raised to any real power t > 0. We found the complexity of the algorithm to be in O(�t�+2mm)

where the error is in O
(

1
2m

)
. For large integers t, we presented a non-trivial example where

our method is exponentially more efficient than the direct repeated application of U a total of
t times. Note that the same exponential speed-up is also possible in the continuous case if
the Hamiltonian has some structure that enables eigenvalue estimation much better than the
standard worst-case limits; in such cases, our procedure, using a modest amount of ancilla
workspace, can simulate the evolution of H for a time τ in a time polynomial in log(τ ).

Our algorithm could be of practical use in a situation where we have very precise clocks
and control, say with error less than a very small positive ε, but for some technical reason
we must run the unknown Hamiltonian for a minimum time Tmin  ε (e.g., because of a
minimum reset time on some critical piece of apparatus, such as a detector, used to simulate
or execute the Hamiltonian), and Tmin is still smaller than 2π/Emax (assuming the energies are
non-negative). In this case, there is a smallest amount of time for which a given Hamiltonian
can naturally be run. If we wish to run the Hamiltonian for less than that amount of time, then
our method could be used.

Further, if the Hamiltonian that solves some problem is time dependent, as is often the
case in quantum circuits or in models based on the permutation or braiding of particles on
a surface, it may be of interest to apply some fraction of this total transformation to turn
the solution to the problem into a subroutine of a larger algorithm. The method we propose
provides a general way of obtaining this fractional application.

Our technique may also be applied to compute other functions of U , by replacing each
eigenvalue eiλk with eif (λk) for any function f (·). This may be useful in contexts such as the
Childs method [20] for simulating continuous time quantum walk Hamiltonians with discrete

8
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time walks. This requires applying phases that are the sines or arcsines of the eigenvalues
of the original Hamiltonian. Our method could achieve this for an unknown Hamiltonian to
be simulated. The properties of the function f (·) will determine the efficiency as a function
of the precision. In the case when f (·) is continuous with a bounded first derivative, and
2π -periodic, then we can also drop the assumption that there must be a gap in the spectrum.

In addition, there are a number of classical cryptography schemes that rely on the
computational difficulty of finding roots modulo some number, such as RSA. One might
naturally attempt to construct quantum cryptography schemes where knowledge of the ‘secret
key’ corresponds to the ability to compute a fractional power (i.e., a root) of some unitary
operator. This algorithm provides a way of implementing such roots, implying serious
limitations for such an approach in quantum cryptographic schemes.
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Appendix A. Controlled unitaries

Note that the eigenvalue estimation algorithm requires the use of a controlled unitary c − U .
If we are given an eigenvector of U with eigenvalue +1, then this transformation can be
implemented using a controlled-SWAP (equivalently, a series of Fredkin gates [21]), as was
shown by Kitaev [13] and is illustrated in the following circuit diagram:

|q1 control • •

|q2 target

SWAP SWAP

|ψk U

It is easy to verify that the above circuit implements

|0〉control|q2〉target|ψk〉 �→ e2π iλk |0〉control|q2〉target|ψk〉
|1〉control|q2〉target|ψk〉 �→ |1〉control(U |q2〉target)|ψk〉.

In other words, up to a global phase, this implements the controlled-(e−2π iλkU). If λk = 0,
i.e., |ψk〉 has eigenvalue +1, then we have implemented c − U . Otherwise, we have a very
similar operation, which may or may not be sufficient, depending on the application. If, for
example, any c − (eiφU) will suffice, as long as we use the same one consistently, then this is
easy to achieve.

9
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We do not need to assume that we know the eigenvectors {|ψk〉} of U or are given a
specific eigenvector. Instead, we can use any state in the target register. For simplicity, we
can consider the completely mixed state, which can be decomposed as an equal mixture over
the eigenstates. Provided we keep the state that is in the target register, and reuse the resulting
state every time we construct a controlled-U between these two registers, the phase (though
random) will be the same for the entire computation. That is, this is equivalent to implementing
c − (eiφU) consistently throughout the computation, where φ is an unknown random value
(whose distribution depends on the weight of the eigenspace of e−iφ in the initial mixed state).
In essence, the target system serves as a phase reference.

Appendix B. Complexity and error analysis

We will describe upper bounds on the precision of our algorithm, which is constrained by
the lack of perfect precision in computing the eigenvalue estimates. We give the analysis for
t = 1

2 ; however, the same final bound applies for any t ∈ (0, 1).
Let us first describe an ‘ideal’ algorithm that exactly computes the square root of U . For

the ideal algorithm, some of the steps will be unnecessary, but we include them to make the
comparison with the actual algorithm simple.

Stage I computes a near-optimal eigenvalue estimation (in the sense of nearly optimizing
the chance of obtaining an estimate with error at most 1

22m ). We do this by repeating the
‘standard’ eigenvalue estimation algorithm [11] a total of r ∈ O(m) times and take the
majority answer, with the constant being chosen so that each eigenvalue estimate e2π iλ̃k of
e2π iλk satisfies |e2π iλ̃k − e2π iλk | � 1

2m with probability in 1 − O
(

1
22m

)
. One can fine-tune the

optimal eigenvalue estimation procedure further (e.g., [22]); however, this simple procedure
is sufficient.

This eigenvalue estimation procedure is described by the transformation

|0〉
∑

k

αk|ψk〉 �→
∑

k

αk

(∑
y

βy,k|y〉|λy〉
)

|ψk〉, (B.1)

where the values y ∈ Z
r
2m (where Z2m = {0, 1, . . . , 2m − 1}) are r-tuples of integers and λy

is the value obtained by taking the most commonly occurring integer ymode in the r-tuple of
integers y (with some convention for breaking ties) and letting λy = ymode/2m.

In the ideal stage II, we exactly implement the map∑
k

αk

(∑
y

βy,k|y〉|λy〉
)

|ψk〉 �→
∑

k

αk

(∑
y

βy,k|y〉|λy〉
)

e2π iλk/2|ψk〉. (B.2)

Then stage III uncomputes the eigenvalue estimation exactly (since with the ideal stage
II, there is no coupling of the control registers with the target registers), leaving us with the
ideal output ∑

k

αk|00 . . . 0〉 e2π iλk/2|ψk〉. (B.3)

The only difference between this ideal algorithm and our actual algorithm is that stage II
actually effects the unitary∑

k

αk

(∑
y

βy,k|y〉|λy〉
)

|ψk〉 �→
∑

k

αk

∑
y

βy,k|y〉|λy〉 e2π iλy/2|ψk〉. (B.4)

10
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Since the probability that |e2π iλy/2 − e2π iλk/2| > 1
2m is in O

(
1

2m

)
(note that here we use the

‘gap’ assumption), we can write the state in stage II as

|�〉 =
∑

k

αk

∑
y∈S

βy,k|y〉|λy〉 e2π iλy/2|ψk〉 +
∑

k

αk

∑
y∈S ′

βy,k|y〉|λy〉 e2π iλy/2|ψk〉, (B.5)

where the values of y ∈ S include the ‘good’ values of y that produce estimates λy satisfying
|e2π iλy − e2π iλk | � 1

2m and the ‘bad’ values, y ∈ S ′, are the rest. The norm of the bad part of
the state is in O

(
1

22m

)
and the norm of the ‘good’ part is 1 − O

(
1

22m

)
.

Let � denote the ideal phase shift operator and �̃ denote the actual operator.
We thus have

�|�〉 − �̃|�〉 =
∑

k

αk

∑
y∈S

βy,k|y〉|λy〉(e2π iλk/2 − e2π iλy/2)|ψk〉

+
∑

k

αk

∑
y∈S ′

βy,k|y〉|λy〉(e2π iλk/2 − e2π iλy/2)|ψk〉.

Thus we can bound the norm of this difference by

‖�|�〉 − �̃|�〉‖2 �
∑

k

∑
y∈S

|αkβy,k|2|δk,y|2 +
∑

k

∑
y∈S ′

|αkβy,k|2|δk,y|2, (B.6)

where |δk,y|2 = |eiλk/2 − eiλy/2|2.
We know that

∑
y∈S

∑
k |αkβy,k|2 ∈ 1 − O

(
1

22m

)
,
∑

y∈S ′
∑

k |αkβy,k|2 ∈ O
(

1
22m

)
, and that

|δk,y|2 ∈ O
(

1
22m

)
for the good values, and at most 1 for the bad values.

Thus

‖�|�〉 − �̃|�〉‖2 ∈ O

(
1

22m

)
. (B.7)

Noting that

‖|u〉 − |v〉‖2
2 = (〈u| − 〈v|)(|u〉 − |v〉) � 2(1 − |〈u|v〉|) (B.8)

and using the equality

‖|u〉〈u| − |v〉〈v|‖Tr = 2
√

1 − |〈u|v〉|2, (B.9)

which implies that

‖|u〉〈u| − |v〉〈v|‖Tr � 2‖|u〉 − |v〉‖2, (B.10)

‖�(|�〉〈�|)�− �̃(|�〉〈�|)�̃‖Tr ∈ O
(

1
2m

)
. The trace norm of the difference between the two

unitary superoperators is simply given by taking the maximization over states |�〉. Since this
holds for any state |�〉, we have

‖� − �̃‖Tr ∈ O

(
1

2m

)
. (B.11)

This is the case after stage II of the algorithm. Note that stage III is a unitary operation
that is the same for both the ideal and the actual cases. The trace norm is invariant under
unitary transformations, so the trace norm of the unitary operators for the full ideal and actual
algorithms have the same bound. In the case of unitary operators, this is equivalent to the
diamond norm.

11
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Appendix C. Inverses

Our algorithm for generating U t uses U−1 when the eigenvalue estimates need to be
uncomputed. More specifically, we start with |0〉|ψk〉, and we apply

(
QFT−1

2m ⊗ I
)
c −

U j(QFT2m ⊗ I) to compute∑
j

(
QFT2m

e2π ijλk

√
2m

|j〉
)

|ψk〉. (C.1)

We then use the value in the first register to control the phase shift corresponding to |ψk〉.
For simplicity, let us assume that we do not bother to induce a phase shift, but we are
still left with the task of uncomputing the ‘damage’ we have done. It is trivial if we have
access to c − U−1 (which can be implemented with a c − U and U−1), since we just apply(
QFT−1

2m ⊗ I
)
c − U−j(QFT2m ⊗ I) to get back |0〉|ψk〉.

However, in some cases, we do not need the U−1 operations. We could attempt to
circumvent the need for U−1 operations by applying (QFT2m ⊗ I)c − U j (QFT−1

2m ⊗ I) to yield

(QFT2m ⊗ I)c − U j(QFT−1
2m ⊗ I)(QFT−1

2m ⊗ I)c − U j(QFT2m ⊗ I)|0〉|ψk〉
= (QFT2m ⊗ I)c − U j(M ⊗ I)c − U j(QFT2m ⊗ I)|0〉|ψk〉, (C.2)

where M = QFT−2
2m , which implies M|x〉 = |2m − x mod 2m〉.

We can easily verify that (M ⊗ I)c −U j (M ⊗ I) = c −U2m−j mod 2m

, and thus the above
state equals

= (QFT2m ⊗ I)(M ⊗ I)c − U2m−j mod 2m
(c − U j(QFT2m ⊗ I)|0〉|ψk〉

= (
QFT−1

2m ⊗ I
)
c − U2m

(QFT2m ⊗ I)|0〉|ψk〉.
(C.3)

Note that since c − U2m

no longer depends on the value of the first register, we can
commute it through the QFTs to get

c − U2m(
QFT−1

2m ⊗ I
)
(QFT2m ⊗ I)|0〉|ψk〉 = c − U2m |0〉|ψk〉 = e2π i2mλk |0〉|ψk〉. (C.4)

This phase factor of e2π i2mλk is in general a problem when the target register is in a
superposition of eigenstates, since different eigenstates will pick up a different phase factor.

In some cases, this is not a problem. One observation is that such a transformation is
equivalent to applying U2m

. Thus, if our goal is to apply U t for t = �t� + δ, 0 � δ < 1,
where t � 2m, we can apply our algorithm for implementing U δ , but instead with the above
modification. This yields an approximation to U2m+δ with error in O

(
1

2m

)
. We can then apply

U t−2m

to complete the approximation of U t with error in O
(

1
t

) ⊆ O
(

1
2m

)
.

Also note that if λk = 	k

2m for an integer 	k , then the phase factors e2π i2mλk = 1 all equal
1, and thus pose no problem.

This problem can also be remedied in any other cases where λk can be determined exactly
(or more significantly precisely than error 1

2m ), since before uncomputing λk , one can add an
additional phase shift of e−2π i2mλk conditional on the value of λk . This will eliminate the final
unwanted phase factor of e2π i2mλk associated with the eigenvector |ψk〉.

Appendix D. Coping with no gap assumption

If one is only interested in the average-case performance (e.g., averaging over all possible
input states to U 1

2 according to the Haar measure), one is still faced with the potential
problem that most or all of the spectrum of U is in the difficult region (see section 2.2)
of eiφ ≈ 1, π < φ � 2π .
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If one is content with obtaining a square root of eiθU for a random θ ∈ [0, 2π), then
one can show that the average-case error (for any input distribution) is still in O

(
1

2m

)
for an

algorithm that only uses the square root of eiθU once.
For an algorithm that uses (eiθU)

1
2 a total of k times, the error could get magnified to

O
(

k2

2m

)
. Thus, one could select m′ = m + �2 log k� for each simulation of (eiθU)

1
2 .

In order to see why we have a k2 factor instead of k, we present an algorithm where
substituting an exact square root with our approximate square root yields an error in �

(
k2

2m

)
.

The value θ is of the form 2πl/2m − ε, for some integer 	 and non-negative value ε � 1/2m.
Consider an operator U that has every 2mth root of unity e2π il/2m

as an eigenvalue with equal
multiplicities. Consider an algorithm that does eigenvalue estimation on the identity operator
with precision in �(1/2m), and uses quantum searching to find an eigenvector with eigenvalue
−1. Clearly, this algorithm should not find such an eigenvalue since all the eigenvalues are
+1. Now let U1 = (eiθU)−

1
2 and let U2 (for simplicity, let us assume it is unitary, even

though in practice it will be a map that is almost unitary) be our approximation to (eiθU)
1
2

for the same θ . Note that U1(eiθU)
1
2 = I , but U1U2 will have most eigenvalues near +1

and proportion 1/2m of the eigenvalues near −1. Thus, a generalized version of quantum
searching (see appendix E) will generate these (close to) −1 eigenvectors with an amplitude in
�

(
k√
2m

)
using only k evaluations of U1U2. Recall that with the ideal (eiθU)

1
2 (instead of U2),

there would be no such eigenvectors for the search algorithm to find; thus the part of the wave
function that found these −1 eigenvalues is an error. This implies an error with probability in
�

(
k2

2m

)
.

Appendix E. A generalization of quantum search

Suppose we are given a black box Oφ that flags an unknown quantum state |φ〉 ∈ HN . In
other words, Oφ|φ〉|b〉 = |φ〉|b ⊕ 1〉 and Oφ|φ′〉|b〉 = |φ′〉|b〉 for any |φ′〉 orthogonal to
|φ〉. For brevity, let us directly use the phase flip version of this black box Oφ|φ〉 = −|φ〉
and Oφ|φ′〉 = |φ′〉 for 〈φ|φ′〉 (see section 8.1 of [10] for a more detailed discussion of the
relationship between these black boxes).

Note that if we have a unitary operation A that maps |00 . . . 0〉 �→ sin(θ)|φ〉 + cos(θ)|φ′〉,
where 〈φ|φ′〉 = 0, then we can define the slight generalization of a quantum search
iterate, Q = −AU00...0A

−1Oφ , where U00...0 = I − 2|00 . . . 0〉〈00 . . . 0| and note that
Qk|00 . . . 0〉 = sin((2k + 1)θ)|φ〉 + cos((2k + 1)θ)|φ′〉. Thus, if we have an algorithm A

that ‘guesses’ |φ〉 with probability p = sin2(θ), then after O
(

1√
p

)
calls to Q, we obtain |φ〉

with probability very close to 1.
In traditional quantum searching, the state |φ〉 is known to be a computational basis state,

and thus it is very easy to produce a unitary A such that |〈φ|A|00 . . . 0〉| = 1√
N

; in particular,

any operator that maps |00 . . . 0〉 �→ ∑
x

1√
N

|x〉 will do.
However, for an arbitrary quantum state |φ〉, it is non-trivial to produce such an initial

state. One cannot simply use a maximally mixed state, since amplitude amplification requires
the inverse of the operation A that generates the ‘guess’. We could resort to techniques for
generating pure states that for practical purposes are ‘random’ (e.g., [23]); however, for this
particular application, it is sufficient to use the following idea.

Let A act on an N2-dimensional Hilbert space and map |00 . . . 0〉|00 . . . 0〉 �→∑
x

1√
N

|x〉|x〉. Note that for any basis {|φj 〉}, this maximally mixed state can be rewritten

as
∑

j
1√
N

|φj 〉
∣∣φ∗

j

〉
(where the coefficients of

∣∣φ∗
j

〉
are the complex conjugates of those of

|φ〉). Note that the maximally entangled state has equal support for every eigenvector in the
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basis of eigenvalues of the black box unitary, which we require for the procedure outlined
in this section to succeed. Let us assume, without loss of generality, that |φ0〉 = |φ〉. If we
apply amplitude amplification, using Q = −AU00...0,0...0A

−1(Oφ ⊗ I ), then it is easy to verify
that

Qk|00 . . . 0〉|00 . . . 0〉 = sin((2k + 1)θ)|φ0〉
∣∣φ∗

0

〉
+ cos((2k + 1)θ)

⎛⎝N−1∑
j=1

1√
N − 1

|φj 〉
∣∣φ∗

j

〉⎞⎠ ,

(E.1)

where sin(θ) = 1√
N

. Thus, by choosing k ≈ π
4θ

∈ O
(

1√
p

)
, we obtain |φ0〉

∣∣φ∗
0

〉
with high

fidelity. For applications where the extra |φ∗〉 system will pose a problem, this approach will
not work, and techniques for generating pure states that behave like random quantum states
could be used instead.

This technique also works if the black box flags a subspace of dimension d. Again, assume
without loss of generality that this subspace is spanned by |φ0〉, |φ1〉, . . . , |φd−1〉. Then the
maximally entangled state can be rewritten as

sin(θ)

⎛⎝d−1∑
j=0

1√
d

|φj 〉
∣∣φ∗

j

〉⎞⎠ + cos(θ)

⎛⎝N−1∑
j=d

1√
N − d

|φj 〉
∣∣φ∗

j

〉⎞⎠ , (E.2)

where sin2(θ) = d
N

.

Thus Qk|00 . . . 0〉|00 . . . 0〉 ≈ ∑d−1
j=0

1√
d
|φj 〉

∣∣φ∗
j

〉
for k ≈ π

4

√
N
d

, assuming
√

d
N

is much
less than 1.

Furthermore, if we applied amplitude estimation [24] in this case, we would be
approximating the value of θ = arcsin

(√
d
N

)
, which would allow us to approximate the

dimension of the subspace, d.
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